

Experimental Therapeutics Programme Spanish National Cancer Research Centre

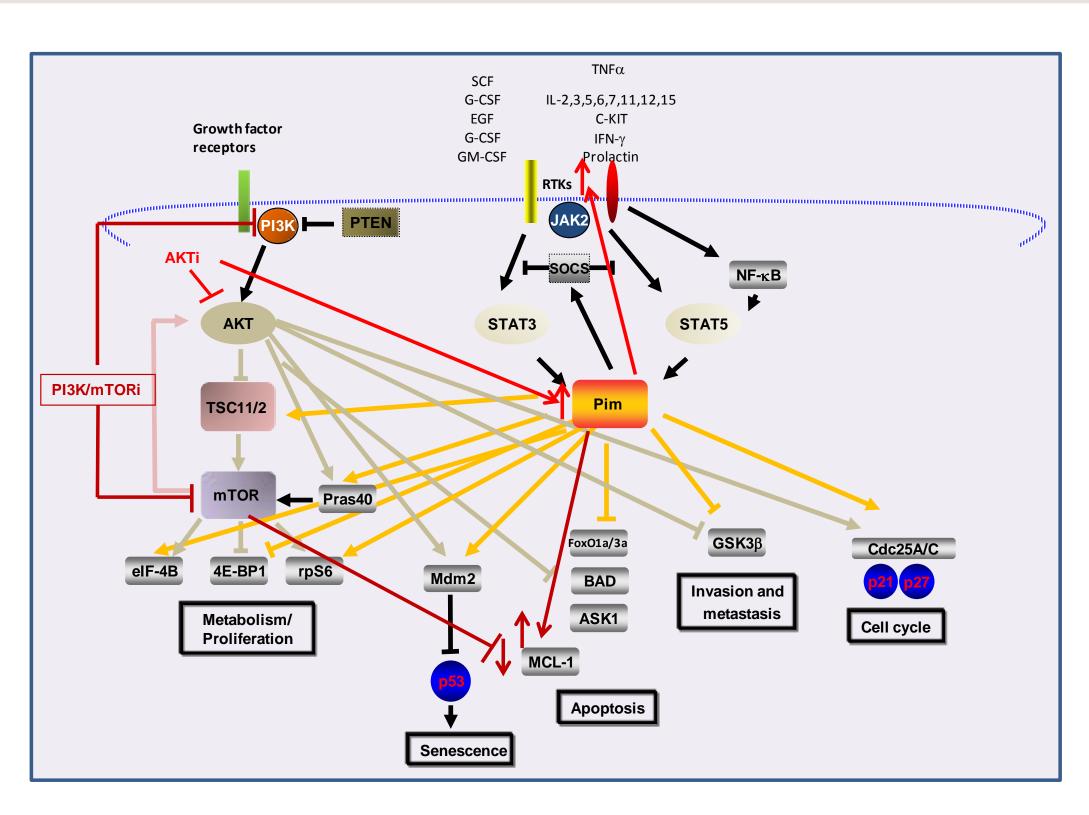
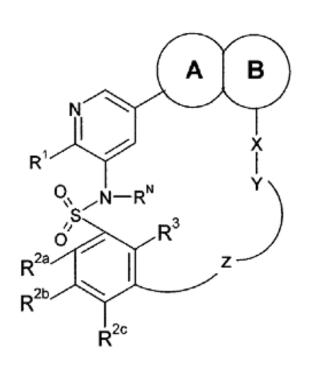


Fig 1. Crosstalk between PI3K/AKT, mTOR and PIM pathways

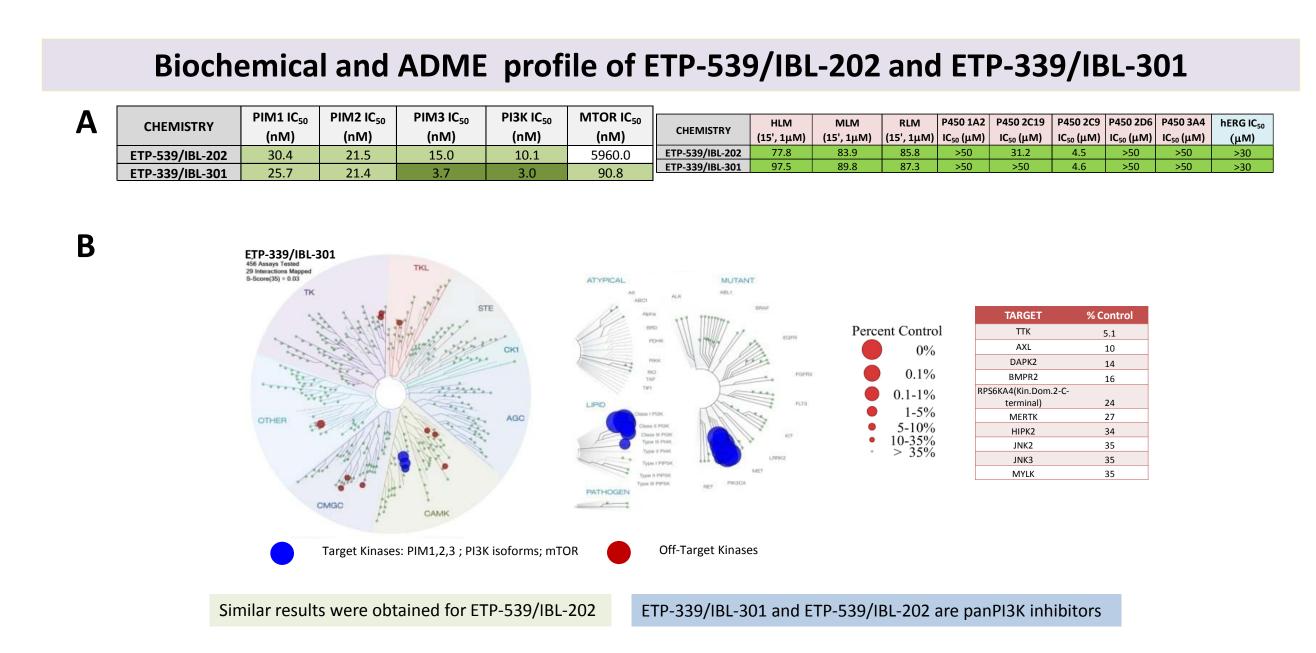
 \succ The PI3K/AKT pathway is commonly activated in human cancer.

 \succ The efficacy of PI3K/mTOR or AKT inhibitors is compromised by the stimulation of compensatory signaling pathways.


> PIM kinases, produce parallel oncogenic signals to AKT and mTOR and share several downstream molecular targets.

 \rightarrow PIM mediates resistance to rapamycin, AKT and PI3K/mTOR inhibition (Schatz et.al. 2011, Cen et al. 2013, Zang et al. 2013).

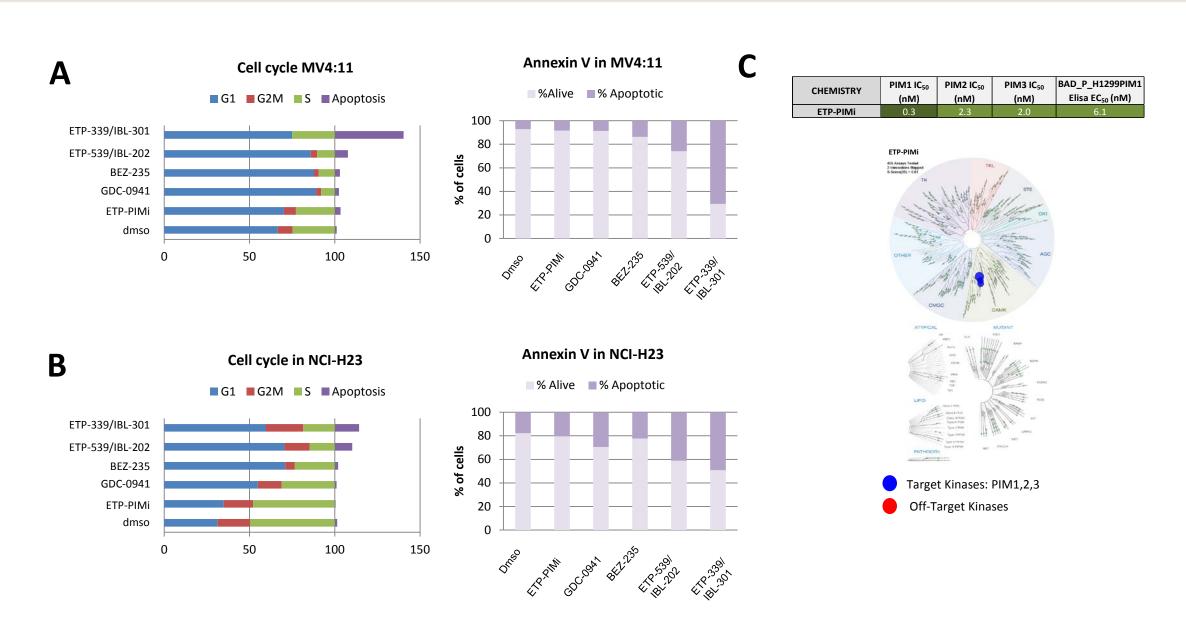
> Combination of PI3K inhibitor GDC-0941 with a PIM selective inhibitor, ETP-45299, is strongly synergistic in antiproliferation experiments in MV4:11 AML cells (Blanco-Aparicio et al. 2011).


Identification of PIM/PI3K and PIM/PI3K/mTOR inhibitors

Compounds from our PI3K program were screened to evaluate their PIM activity identifying in such a way hits with weak dual PI3K-PIM activities. These hits came from an internally generated collection of macrocycles, which were explored to fine tuning dual PI3K/mTOR activities. Crystal structure of the hits in PIM1 protein helped us to understand the key interactions of these compounds required for PIM activity. Taking this into account, a chemical exploration was done around them trying to balance the dual (PIM, PI3K) or triple (PIM, PI3K, mTOR) activities and to optimize the drug like properties of the compounds. As a result of this exploration compounds ETP-539/IBL-202 and ETP-339/IBL-301 were identified.

Co-targeting PIM and PI3K/mTOR pathways with a single molecule: Novel orally available combined PIM/PI3K and PIM/PI3K/mTOR inhibitors.

Carmen Blanco-Aparicio¹, Rosa Álvarez¹, Oliver Renner¹, Elena Gómez Casero¹, Antonio Cebriá¹, Enara Aguirre¹, David Cebrián¹, M^a Carmen Rodríguez¹, Nuria Ajenjo¹, Belén Pequeño¹, M^a Isabel Albarrán¹, Rosario Riesco¹, Ana Belén García¹, Antonio Rodríguez Hergueta¹, Michael O'Neill², Sonia Martínez¹, Joaquín Pastor¹ ¹ Experimental Therapeutics Programme. Spanish National Cancer Research Centre (CNIO). ² Inflection Biosciences Ltd. moneil@inflectionbio.com



2. A) Biochemical potency towards PIM isoforms, PI3K α and mTOR. In vitro ADME properties: microsome stability, cytochromes and hERG inhibition. B) KINOMEscan[™] in vitro binding assays was used to evaluate ETP-339/IBL-301 and ETP-539/IBL-202 against a panel of 456 kinases.

Downregulation of PIM and PI3K /mTOR by dual and triple action inhibitors

Α	GDC-0941 PI3Kinh	ETP-539/IBL PIM+PI3K		В	BEZ-235 PI3K/mTOR inh		ETP-339/IBL-301 PIM+PI3K+mTOR inh	
P-AKT (Ser473) AKT	0 0.014 0.041 0.123 0.370 1.11 3.33 10 µМ Е	0 0.014 0.041 0.123 0.370 1 50 (nM) 300	.11 3.33 10 μΜ EC ₅₀ (nM) 40	1) P-AKT (Ser473) AKT	0 0.014 0.041 0.123 0.370 1.11 3.33 10 μM	EC ₅₀ (nM) 0.67	0 0.001 0.01 0.1 0.5 1 2.5 5 10 μM	EC ₅₀ (nM) <0.5
P-BAD (S112) BAD		9350	1370	P-BAD (S112) BAD		1820		34
4E-BP1 (Ser65) 4E-BP1		2770	43	4E-BP1 (Ser65) 4E-BP1		<17		39

Figure 3. Dose dependent inhibition of PIM, PI3K and mTOR biomarkers in MV4:11 acute leukemia cell line treated 1h with A) GDC-0941 and ETP-539/IBL-202 and B) BEZ-235 and ETP-339/IBL-301.

Cell cycle and apoptotic profile of Dual PIM/PI3K inhibitors

Figure 4. Cell cycle analysis and annexin V of ETP-PIMi, GDC-0941, ETP-539/IBL-202, BEZ-235 and ETP-339/IBL-301 at 1µM. A) MV4:11 acute myeloid leukemia cell line treated 24h. B) NCI-H23 non small cell lung cancer cell line treated 48h. C) ETP-PIMi: biochemical potency towards PIM isoforms and selectivity by KINOMEscan^{TM.}

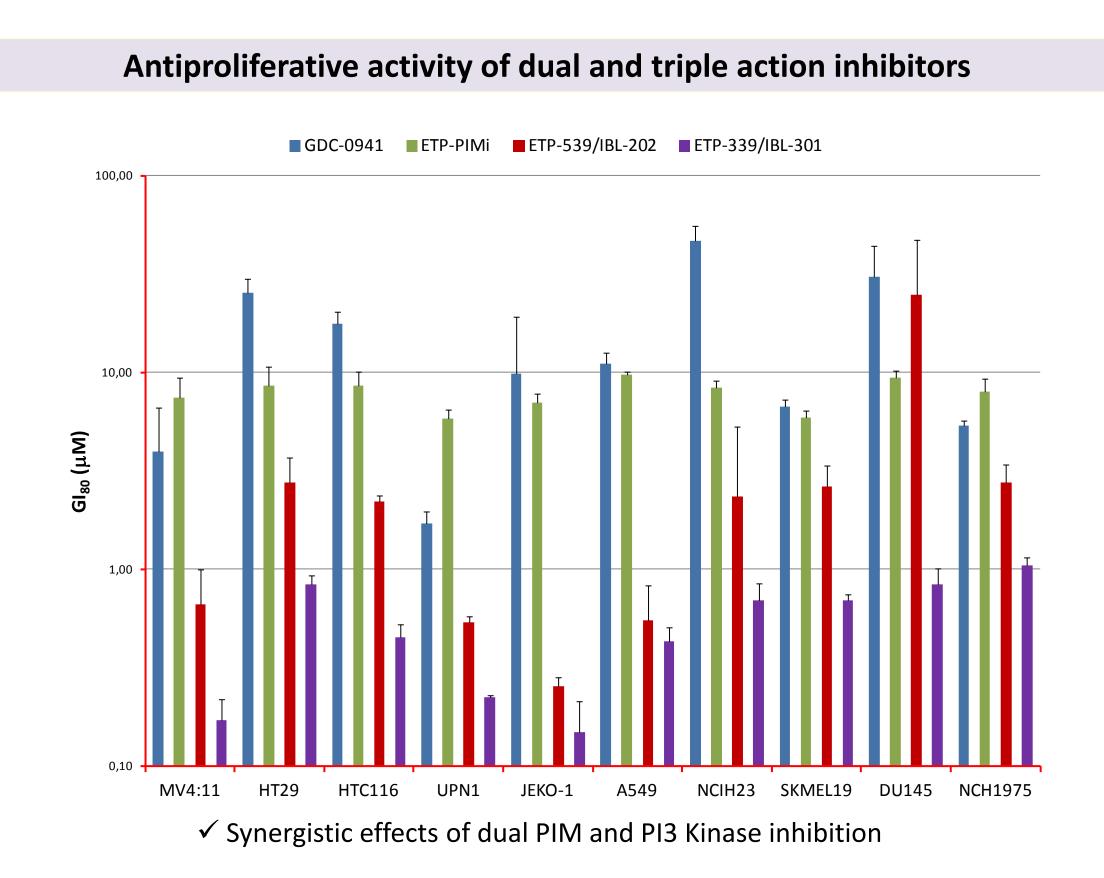


Figure 5. Antiproliferative activity in different cell lines (72h) of ETP-PIMi, GDC-0941, ETP-539/IBL-202 and ETP-339/IBL-301

Pharmacokinetic profile of ETP-539/IBL-202 and ETP-339/IBL-301 in mouse and rat exposure

		ETP-539/IE	3L-202		🗕 IV (mouse) 🕶 PO (mouse) 🕂 PO (rat
	Mous	e PK	Rat exposure	100000	- IV (IIIOUSE) - PO (IIIOUSE) - PO (Iat
PARAMETER	I.V.	ORAL	ORAL		
F(%)	-	87.05		ou)	
Cmax(ng/ml)	-	2243.83	2347	1000 tion	
Tmax (h)	-	8.00	7.3	100 g	
AUC inf (h*ng/ml)	21329.05	29709.35	47058	Concentration (ng/ml) 00 100 100 100 100 100 100 100 100 100	
T ½ (h)	2.27	-		- 1	
CI(L/h/kg)	0.04	-		1-1	· · · · · · · · · · · · ·
Vd (L/kg)	0.13	-			0 2 4 6 8 10 12 14 16 18 20 22
MRT (h)	2.95				Time (h)
		ETP-339/IE	3L-301		🗕 IV (mouse) 🕶 PO (mouse) 👎 PO (r
				40000	
	Mou	se PK	Rat Exposure	¹⁰⁰⁰⁰]	=
PARAMETER	Mou I.V.	se PK ORAL	Rat Exposure ORAL		
PARAMETER F(%)					
		ORAL			
F(%)		ORAL 34.51	ORAL		
F(%) Cmax(ng/ml)	I.V. - -	ORAL 34.51 2929.00	ORAL 1817		
F(%) Cmax(ng/ml) Tmax (h) AUC inf	I.V. - -	ORAL 34.51 2929.00 0.25	ORAL 1817 6	entration (ng/ml) 00 00	
F(%) Cmax(ng/ml) Tmax (h) AUC inf (h*ng/ml)	I.V. - - - 16596.24	ORAL 34.51 2929.00 0.25	ORAL 1817 6		
F(%) Cmax(ng/ml) Tmax (h) AUC inf (h*ng/ml) T ½ (h)	I.V. - - 16596.24 3.15	ORAL 34.51 2929.00 0.25 57280.69 -	ORAL 1817 6 28000 -	Concentration (ng/ml) 0 10 10 10 100 10 100 10	

Figure 6. A) Plasma comparative levels of ETP-539/IBL-202 in mouse (1mg/kg i.v. and 1.6mg/kg p.o) and rat (10 mg/kg p.o). B) Plasma levels of ETP-339/IBL-301 (1 mg/kg i.v and 10mg/kg p.o.) in mouse and rat (Rat PK data was generated by Pharmidex).

INFLECTION BIOSCIENCES

Preliminary low dose study: in vivo biomarkers downregulation and efficacy in K-**Ras^{G12V}-Induced NSCLC**

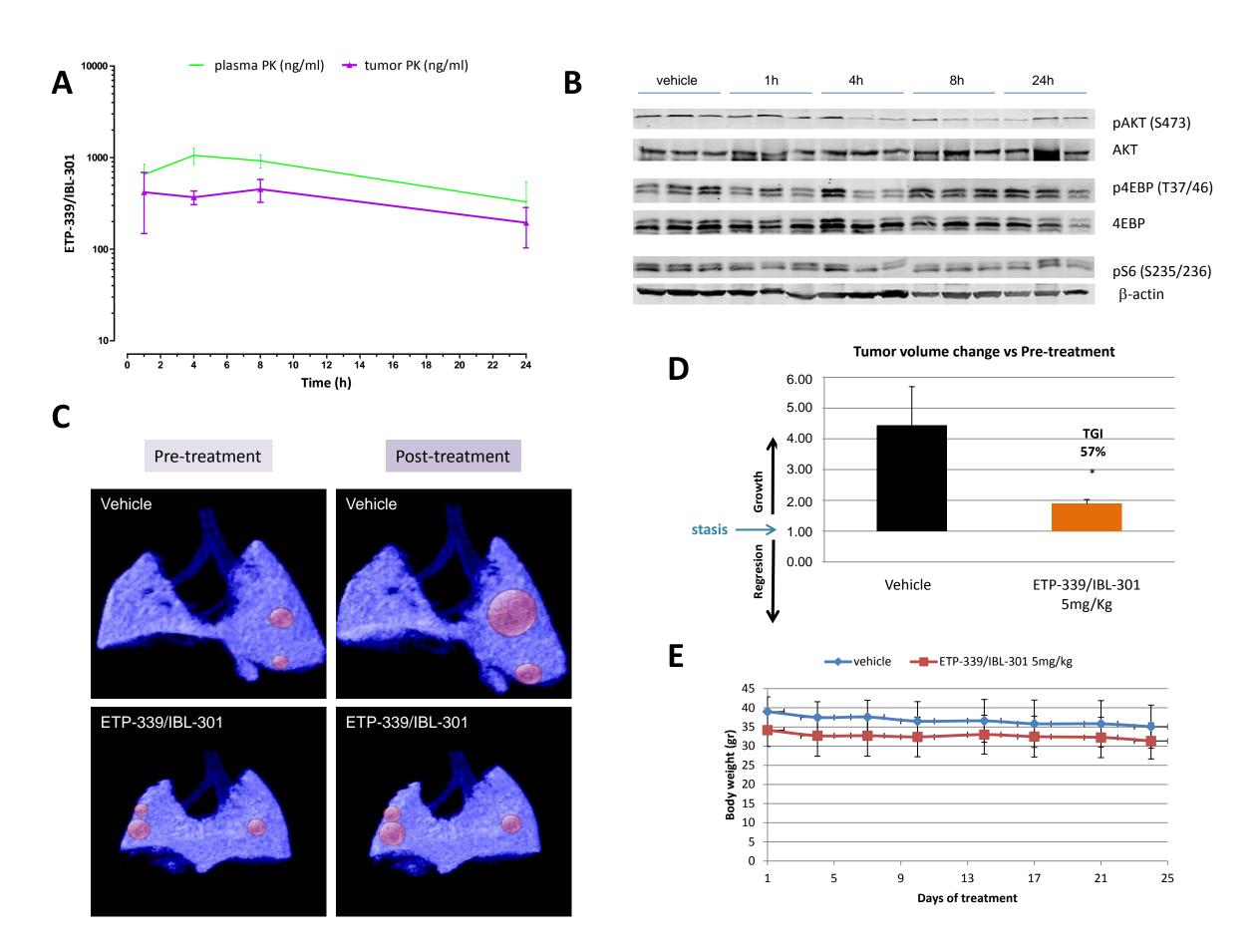


Figure 7. A) ETP-339/IBL-301 exposure in plasma and tumor at different time points after compound p.o administration 5mg/kg in K-Ras+/LSLG12Vgeo ; RERT ert/ert conditional mice (Guerra, Cancer Cell 2003). The K-Ras mutation was induced by tamoxifen and six and a half months later when lung tumors developed, mice were treated. B) Western blot analysis of the effect ETP-339/IBL-301 on PI3K, mTOR and PIM kinases downstream protein targets in KRas^{V12} lung tumors. C) Computed tomography (CT) scans of K-Ras+/LSLG12Vgeo ; RERT ert/ert conditional mice before and after treatment. Mice were treated orally with ETP-339/IBL-301 5mg/kg, 5 days a week for 3 weeks. D) Tumor volumes of five mice in each treatment group after three weeks of daily treatment are shown as percentage of relative change to pretreatment tumor volumes. Values are means ± s.e.m. E) Body weight variation during the efficacy study.

Conclusions

-Compounds with dual PIM/PI3K or PIM/PI3K/mTOR inhibition activities have been developed. ETP-539/IBL-202(PIM/PI3Ki) and ETP-339/IBL-301(PIM/PI3K/mTORi) have been identified as selective orally bioavailable compounds.

- Both ETP-539/IBL-202 (PIM/PI3Ki) and ETP-339/IBL-301 (PIM/PI3K/mTORi) showed more potent antiproliferative activity than PIM and PI3K selective inhibitors alone. This correlated with higher induction of apoptosis and strong donwregulation of PIM, **PI3K, mTOR pathways.**

- Dual and triple compounds show synergistic effect in cancer cell lines over single agent compounds.

- ETP-339/IBL-301 (PIM/PI3K/mTORi) has been characterized in vivo, showing downregulation of PIM, PI3K, mTOR pathway biomarkers in PK/PD mechanistic studies, together with efficacy in GEMM of NSCLC at a low dose of 5mg/kg.