

RCSI DEVELOPING HEALTHCARE LEADERS WHO MAKE A DIFFERENCE WORLDWIDE

Evaluation of dual-acting PIM/PI3K inhibitor IBL-302 in preclinical breast cancer models Sean Kennedy¹, Michael O Neill², Darren Cunningham², Carmen Blanco-Aparicio³, Sonia Martinez³, Alex J Eustace^{4*}, Bryan T Hennessy^{1*}

¹ Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons Ireland, Smurfit Building Beaumont Hospital, Beaumont, Dublin, Ireland, ² Inflection Biosciences, Anglesea house, Blackrock, Dublin, Ireland, ³ Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), ⁴ Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland. * represent joint senior authors

INTRODUCTION

Activating PI3K mutations have been identified in more than 30% of breast cancers. These mutations have been associated with resistance to trastuzumab a HER2-binding monoclonal antibody. PIM kinase expression has been shown to be markedly elevated in PI3K treated breast cancer samples suggesting that it could be a major resistance pathway for PI3K inhibitors in breast cancer, potentially limiting their clinical utility. IBL-302 is a novel molecule that inhibits both PIM and PI3K signalling. This mechanism of action could afford significant benefit in the treatment of breast cancer.

AIMS

The primary objective of this study was to evaluate IBL-302 in preclinical *in-vitro / in*vivo breast cancer models.

STRUCTURE OF IBL-302 – A NOVEL PIM/PI3K INHIBITOR

Figure 1: The structure of IBL-302 is a first-in-class oral kinase inhibitor rationally designed to combine pan-PIM uniquely kinase, pan-PI3K and mTOR inhibition in a single agent. IBL-302 has been tested in over 700 cell lines with activity shown across a broad range of tissue types. Initial analysis of this cell identifies PIK3CA panel line PIM high kinase mutation, expression and elevated MYC expression as factors indicating sensitivity to IBL-302, markers which may be supportive in selecting patient subgroups in clinical trials.

METHODS

- Figure 2: Sanger Institute GDSC screening panel of more than 700 different cancer cell lines in a CellTiter Glo anti-proliferation assay (72hr incubation).
- Figure 3: (A) T-test comparing HER 2 AMP / ER+ versus TNBC breast cancer cells, focusing on IC_{50} (B) T-test comparing Non MYC AMP versus MYC AMP breast cancer cells, focusing on IC_{50} (C) Pearson rank correlation used to determine correlative trend observed between IC₅₀ and PIM1 expression (**D**) Pearson rank correlation used to determine correlative trend observed between IC_{50} and PIM3 expression.
- Figure 4: Treatment with IBL-302 (50mg/kg) PO for 21-days BT474 (C) and HCC1954 (**D**) in xenograft model versus vehicle controls in BALB/c nude mice.
- Figure 5: Proliferation assays were performed with IBL-302 at increasing concentrations with a static Trastuzumab concentration (10µg/ml) across 7 different cells lines (A – G). Following 5-day incubation, during which control cells attained 80-90% confluence, all media was removed from the plates, and washed once with PBS. Proliferation was measured using the acid phosphatase assay.

Contact Details: Sean Kennedy; Seanpkennedy@rcsi.ie

IBL-302 IC₅₀ IN 40 BREAST CANCER CELL LINES

ACKNOWLEDGEMENTS

We wish to thank Michael O Neill and Darren Cunningham (Inflection Biosciences) for use of their compound, IBL-302.

amplified breast cancers were shown to have a lower IBL-302 IC₅₀ when compared with non MYC amplified breast cancers (*p*-value = 0.012617). (C) Increased PIM 1 expression was shown to correlate with a lower IBL-302 IC₅₀ while conversely, (**D**) decreased PIM 3 expression was shown to correlate with a lower IBL-302 IC₅₀.

Figure 5: Alkaline phosphatase assay showing the viability of SKBR-3 Parental (A), SKBR-3 Trastuzumab resistant (B), SKBR-3 Lapatinib resistant cells (C), BT474 Parental (D), BT474 Trastuzumab resistant (E), HCC1954 Parental (F) & HCC1954 Lapatinib resistant (G) cells after combination of ascending amounts of IBL-302 with a static amount of Trastuzumab (10µg/ml).

In conclusion, we have evaluated the preclinical activity of IBL-302 in a range of breast cancer models.

- IBL-302 has shown significant efficacy in a number of breast cancer cell lines in vitro and in vivo.
- We have stratified and identified a number of factors associated with increased IBL-302 sensitivity through statistical analysis (TNBC, MYC amplification & Increased PIM1 expression).
- Initial statistical analysis suggests IBL-302 could be effective in TNBC groups.
- In combination with Trastuzumab, IBL-302 demonstrated the best anti-proliferative effects in parental lines and in SKBR-3 trastuzumab resistant cell lines with acquired resistance to Trastuzumab.
- Our results demonstrate the preclinical efficacy of IBL-302 as a single agent and in combination with trastuzumab in models of HER2-positive breast cancer. We believe that further studies assessing the impact of IBL-302 with novel HER2-targeted agents are warranted.

CONCLUSION

